Laborscope durchsuchen...

Mediadaten

Download Mediadaten 2017

Laborscope das offizielle Organ des Fachverbandes für Laborberufe Schweiz.

Ein schwebendes Nanokügelchen als ultra-empfindlicher Sensor

Empfindliche Sensoren müssen weitgehend von Umwelteinflüssen abgeschirmt sein. Forschende an der ETH Zürich haben nun gezeigt, wie man elektrische Ladung von einem Nanokügelchen, mit dem kleinste Kräfte gemessen werden können, entfernt und ihm hinzufügt.

Oliver Morsch

Ein winziges Kügelchen und ein Laserstrahl, in dem es wie von Zauberhand gehalten schwebt – mit diesen einfachen Mitteln haben Martin Frimmer und seine Mitarbeitenden am Photonics Laboratory der ETH Zürich einen hochempfindlichen Sensor entwickelt. Das Gerät soll in Zukunft unter anderem extrem schwache Kräfte oder kleinste elektrische Felder präzise messen. Auf dem Weg dorthin sind die Forscher nun einen grossen Schritt weitergekommen, wie sie in einem kürzlich erschienenen Fachartikel schreiben.

Nanokügelchen im Laserstrahl
Das Grundprinzip eines Sensors erklärt Martin Frimmer, Postdoc in der Arbeitsgruppe von ETH-Professor Lukas Novotny, sehr einleuchtend: «Zunächst muss ich wissen, wie das Objekt, das als Sensor fungiert, mit seiner Umwelt in Kontakt steht. Wenn dann über diese Einflüsse hinaus etwas mit ihm passiert, dann weiss ich: Aha, da ist eine Kraft am Werk.»
In der Praxis bedeutet dies meistens, dass man die Wechselwirkungen mit der Umgebung möglichst gering halten will, um die Empfindlichkeit des Sensors auf die zu messenden Kräfte zu maximieren. Genau dies erreichten die Wissenschaftler, indem sie ein kugelförmiges Nanopartikel aus Siliziumdioxid, dessen Durchmesser etwa hundert Mal kleiner ist als ein menschliches Haar, mit Hilfe eines gebündelten Laserstrahls einfangen. Dieser bildet eine so genannte «optische Pinzette», in der das Nanokügelchen durch Lichtkräfte im Brennpunkt des Strahls festgehalten wird. Wirkt nun eine weitere Kraft auf das Kügelchen, so wird es aus seiner Ruheposition verschoben, was man wiederum mit Hilfe eines Laserstrahls messen kann.

Weiterlesen: Ein schwebendes...

Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht so häufig vor – bisher. Denn seit einigen Jahren steigt die Methan-Konzentration. Um den Ursachen auf den Grund zu gehen, ist es wichtig zu messen, wo und in welcher Menge Methan in die Erdatmosphäre abgegeben wird.
Eine globale Erfassung der Emissionswerte mit hoher Auflösung ist mit der herkömmlichen Messtechnologie nicht möglich. Satellitengestützte Systeme nutzen derzeit das Sonnenlicht, um Methan aufzuspüren. Messen kann man daher immer nur auf der sonnenzugewandten Seite der Erde und bei wolkenfreiem Himmel. Die Licht-Absorption lässt Rückschlüsse auf die Moleküle zu, die in der Luft vorhanden sind.

Weiterlesen: Klima-Satellit: Mit robuster...

Weiches Kunstherz auf dem Prüfstand

ETH-Forschende aus der Gruppe für Funktionelles Material-Engineering haben ein Silikonherz entwickelt, das sehr ähnlich pumpt wie ein menschliches Herz. Gemeinsam mit Kollegen von der Professur für Produktentwicklung und Konstruktion haben sie geprüft, wie gut es funktioniert.

Franziska Schmid

Unverkennbar – was da schlägt, sieht aus wie ein echtes Herz. Und dies ist auch das Ziel des ersten weichen Kunstherzens: möglichst nah am natürlichen Vorbild zu sein. Entwickelt hat dieses Silikonherz Nicholas Cohrs. Er ist Doktorand in der Gruppe von Wendelin Stark, Professor für Funktionelles Material-Engineering an der ETH Zürich. Der Grund, warum die Natur hier Vorbild sein sollte, ist einleuchtend: Heute existierende Kunstherzen haben viele Nachteile. Die Mechanik ist anfällig auf Störungen. Zudem kommen die derzeitig verwendeten Kunstherzen ohne Puls aus, wobei noch unklar ist, welche Folgen dies für den Körper haben könnte. «Ziel muss also sein, ein Herz zu entwickeln, das ungefähr die gleiche Grösse hat, wie das eines Patienten und welches das menschliche Herz in Form und Funktion so gut wie möglich imitiert», so Cohrs.
Ein gut funktionierendes Kunstherz zu haben, wäre indes mehr als nötig: Rund 26 Millionen Menschen weltweit leben mit einer Herzinsuffizienz und Spenderherzen sind Mangelware. Mit mechanischen Kunstherzen und Herzunterstützungssystemen werden die Wartezeiten von schwerkranken Patientinnen und Patienten überbrückt, bis sie ein Spenderherz erhalten oder das Herz sich von selber wieder erholt.

Weiterlesen: Weiches Kunstherz auf dem...

Mikroplastik aus der Waschmaschine

Textilien aus Kunstfasern setzen Mikrofasern frei

Nicht erst seit der UN-Konferenz zum Schutz der Ozeane anfangs Juni weiss man um die desaströsen Auswirkungen von Plastik auf die Weltmeere; Milliarden von Plastikteilen schwimmen in den Ozeanen. Hinlänglich bekannt sind auch deren Auswirkungen: Meerestiere verschlucken sie oder verfangen sich darin, um dann qualvoll zu verenden. Weniger bekannt sind dagegen die Folgen von kleinsten Plastikteilchen, so genannte Mikroplastik. Empa-Forscher haben nun begonnen zu untersuchen, wie und woraus Mikroplastik überhaupt erst entsteht.

Marc Estermann

Für Mikroplastik in unserem Abwasser sind vor allem zwei Faktoren verantwortlich: Einerseits enthalten viele Kosmetikartikel wie Zahnpasta, Cremes, Duschgels und Peelings winzige Plastikteilchen, um einen mechanischen Reinigungseffekt zu erzielen. Andererseits wird Mikroplastik beim Waschen von Kleidern aus Polymer-Textilien ausgespült und gelangt so über das Abwasser in unsere Umwelt.
Viele Forscher, die sich in letzter Zeit mit Nanopartikeln auseinandergesetzt haben, forschen mittlerweile auch über Mikroplastik. So auch Bernd Nowack, Edgar Hernandez und Denise Mitrano – die inzwischen beim Wasserforschungsinstitut Eawag arbeitet – aus der Empa-Abteilung «Technologie und Gesellschaft», die vor kurzem basierend auf ihren Forschungsarbeiten zu Nanopartikeln eine erste quantitative Untersuchung zur Freisetzung von Mikrofasern aus Polyestertextilien beim Waschen im Fachblatt «Environmental Science and Technology» publiziert haben. Dabei hat das Empa-Team in erster Linie untersucht, wie sich Waschmittel, Wassertemperatur sowie Anzahl und Länge der Waschgänge auf die Freisetzung von Mikrofasern auswirken.

Weiterlesen: Mikroplastik aus der...

Graphen bietet neue Funktionen für elektronische Nanogeräte

Ein internationales Team unter der Leitung der Universität Bern und des National Physical Laboratory (NPL, UK) eröffnet der nächsten Generation von nanoelektronischen Geräten neue Wege: Der «Wunderstoff» Graphen macht Innovationen auf verschiedensten Gebieten wie der Umwandlung und Speicherung von Energie oder flexiblen Touchscreens möglich. So können noch kleinere und effizientere Geräte entwickelt werden.

Der Forschungsbereich der molekularen Nanoelektronik zielt darauf ab, einzelne Moleküle als «Bausteine» für elektronische Geräte zu nutzen, deren Funktionen zu verbessern und die Entwicklung möglichst kleiner und dennoch kontrollierbarer Geräte zu ermöglichen. Das Haupthindernis, das bisher konkrete Fortschritte erschwerte, bestand in der fehlenden stabilen Verbindung zwischen den Molekülen und den verwendeten Metallen bei Raumtemperatur. Graphen, das oft als «Wundermittel» bezeichnet wird, besitzt nicht nur eine hervorragende mechanische Stabilität, sondern auch eine ausserordentlich hohe elektronische und thermische Leitfähigkeit, womit das zweidimensionale Material für eine Vielzahl möglicher Anwendungen in molekularer Elektronik attraktiv ist.
Ein Forschungsteam der Universität Bern, des National Physical Laboratory (NPL) und der University of the Basque Country (UPV/EHU, Spanien), unterstützt von Forschenden der Chuo University (Japan), hat es nun einen Durchbruch geschafft: Sie konnten eine auch bei Raumtemperatur stabile Verbindung zwischen Graphen und einzelnen Molekülen demonstrieren. Dies war mit den bisher standardmässig verwendeten Metallen nicht möglich und stellt daher einen wichtigen Schritt im Hinblick auf die Entwicklung von graphenbasierten elektronischen Geräten dar. Die Resultate wurden nun im Journal Science Advances publiziert.

Weiterlesen: Graphen bietet neue...

Seite 1 von 2