Laborscope durchsuchen...

Mediadaten

Download Mediadaten 2017

Laborscope das offizielle Organ des Fachverbandes für Laborberufe Schweiz.

Schutz für die Barriere im Darm 4-5/17

Stammzell-Transplantation: Aktivierung von Signalwegen schützt vor gefährlicher Immunreaktion

Stammzelltransplantationen können Leben retten, etwa bei Leukämie. Ohne Risiken sind diese Behandlungen jedoch nicht. Eine mögliche Komplikation ist die Graft-versus-Host-Reaktion, bei der aus den Stammzellen Immunzellen entstehen, die den Körper angreifen. Ein Team der Technischen Universität München (TUM) hat molekulare Mechanismen identifiziert, die in Zukunft Erkrankte vor der gefährlichen Reaktion schützen könnten. Der Schlüssel, um die Graft-versus-Host-Reaktion zu verhindern, liegt im Darm.

Damit fremde Stammzellen sich im Körper vermehren und beispielsweise gesunde Blutkörperchen produzieren, muss zunächst einmal Platz für sie geschaffen werden. Zu diesem Zweck werden vorhande Zellen im Knochenmark vor einer Transplantation mit Medikamenten oder Strahlung zerstört. Eines der Risiken dabei ist die Graft-versus-Host-Reaktion (etwa: Transplantat-gegen-Empfänger-Reaktion). Sie tritt ungefähr bei der Hälfte der Behandlungen auf. Vereinfacht gesagt bilden sich dabei aus den transplantierten Stammzellen sogenannte T-Lymphozyten. Diese Abwehrzellen sollen eigentlich schädliche Eindringlinge wie Bakterien bekämpfen, kommen aber auf die falsche Spur und beginnen, den ohnehin schon geschwächten Körper der Patienten anzugreifen.

Ein internationales Team um Privatdozent Dr. Hendrik Poeck und Dr. Tobias Haas, Leiter einer Forschungsgruppe an Klinik und Poliklinik für Innere Medizin III, Hämatologie und Onkologie des Klinikums rechts der Isar der TUM, und Professor Marcel van den Brink am Memorial Sloan Kettering Cancer Center (MSKCC) in New York, schildert im Fachjournal «Science Translational Medicine», wie man diesen Prozess verhindern könnte.

Weiterlesen: Schutz für die Barriere im...

Ein DNA-Pantoffelheld 4-5/17

Es klingt ein wenig wie aus einem Design-Wettbewerb: Wie können kleine Informationsschnipsel ausgelesen werden, wenn das Trägermaterial zu klein ist, um in den Leseapparat gefüttert werden zu können? Man hängt die kleinen Schnipsel zu einem längeren Streifen zusammen und verbindet dessen Enden, um handliche Ringe zu erhalten, die sogar mehrmals im Kreis ausgelesen werden können. Auf diese clevere Lösung ist ein kleiner Organismus namens Paramecium tetraurelia (zu den Pantoffeltierchen gehörend) gekommen, um die Transkription von kurzen ausgeschnittenen DNA-Segmenten in RNA zu bewerkstelligen. Aber man muss die Geschichte eigentlich vom anderen Ende her erzählen: Als Mariusz Nowacki vom Institut für Zellbiologie der Universität Bern kleine RNAs fand, die eine offensichtliche regulatorische Funktion bei der Elimination von DNA-Segmenten aus dem Paramecium-Erbgut erfüllten, machten er und sein Team sich daran, die molekularen Mechanismen zu erforschen: Wo kamen diese RNAs her und wie genau liess sich ihre Funktion verstehen? Bald hatten sie eine Art Feedback-Loop bei der Elimination der DNA-Segmente gefunden. Klassischerweise nimmt man an, dass diese als nutzlos angesehenen DNA-Abschnitte (auch ‹junk DNA› genannt) aus dem Genom herausgeschnitten und dann unmittelbar von der Zellmaschinerie abgebaut werden. Doch hier dienen sie offenbar noch vor der Verdauung als Vorlagen für kleine RNAs, die dann wiederum beim Herausschneiden weiterer DNA-Schnipsel helfen. Dieses molekulare Schneeballsystem war zuvor noch nie beobachtet worden.

Weiterlesen: Ein DNA-Pantoffelheld 4-5/17

Künstlicher Ortswechsel für Proteine dank neuem Nanobody-Tool 4-5/17

Forschende am Biozentrum der Universität Basel haben eine Methode entwickelt, mit der sich Proteine an einen anderen Ort in der Zelle verfrachten lassen. Dadurch ist es möglich, die Funktion von Proteinen in Abhängigkeit zu ihrer Position zu untersuchen. Das Nanobody-Tool lässt sich für eine Vielzahl von Proteinen verwenden und ist in sämtlichen Bereichen der Entwicklungsbiologie einsetzbar. Die Fachzeitschrift «eLife» hat die Resultate veröffentlicht.

Die Gruppe von Prof. Markus Affolter erforscht das Wachstum des Flügels der Fruchtfliege Drosophila um herauszufinden, welche Prozesse die Entwicklung und das Organwachstum steuern. Proteine, die solche Wachstumsprozesse kontrollieren, stehen im Fokus ihrer Untersuchungen. Dabei ist nicht allein die Zusammensetzung der Proteine von Bedeutung, sondern auch ihre Position. Diese kann die jeweilige Funktion eines Proteins beeinflussen. Das neue Nanobody-Tool ermöglicht es, die Lage der Proteine zu verändern und so ihre Funktion zu erforschen.

Weiterlesen: Künstlicher Ortswechsel für...

Durchfallerreger in Ketten legen 4-5/17

Peter Rüegg

Forschende klärten auf, wie Impfungen bakterielle Darmerkrankungen bekämpfen können: Die Impfstoff-induzierten Antikörper des Darms legen Krankheitserreger, die sich im Darm ausbreiten, in Ketten. Das verhindert die Erkrankung und unterbindet erstaunlicherweise auch die Verbreitung von Antibiotikaresistenzen.

Impfungen haben sich im Kampf gegen Krankheitserreger wie Bakterien oder Viren bewährt. Sie regen den Körper zur Bildung von schützenden Antikörpern (IgA) an. Auch gegen Darminfekte wurden Impfungen bereits eingesetzt.
Wie jedoch die Darm-Antikörper, die sogenannten sekretorischen IgA, vor Infektionen schützen, war bislang unklar. Eine Gruppe von Forschenden unter der Leitung von ETH-Oberassistentin Emma Slack zeigt nun am Beispiel des Salmonellen-Durchfalls, dass sekretorisches IgA ganz anders wirkt, als die Wissenschaftler bisher vermutet haben.
Die Forscherinnen und Forscher zeigen in einer soeben in der Fachzeitschrift «Nature» erschienenen Studie auf, dass impfungsinduzierte IgA-Antikörper die Krankheitserreger im Darm quasi in Ketten legt: IgA heftet die Tochterbakterien nach der Vermehrung aneinander. Die verketteten Bakterien können sich zwar weiterhin vermehren, doch bleiben auch alle ihre Nachkommen in diesen Klumpen gefangen. Die Verklumpung in genetisch einheitlichen Familien verhindert die Ansteckung des Darmgewebes, beschleunigt das Ausscheiden des Erregers und unterbindet den Gen-Austausch zwischen Bakterien verschiedener Familien.

Weiterlesen: Durchfallerreger in Ketten...